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SAP

SAR

OA

SA

X,¥,2

c,g,f,w,gi

LIST OF SYMBOLS

DEFINITION

Single Axis Platform.
Single Axis Reference.
Input axis of SAP.
Output axis of SAP.
Spin axis of SAP

The "delta" shall mean an incremental change in
that quantity when placed before the quantity.

The '"bar'" shall mean a vector quantity when plaeced
over the quantity. '

The "dot" shall mean a time derivative of a
quantity when placed over the quantity.

The "x'" shall mean a scalar derivative when placed
above a quantity.

The axis of a right-hand orthogonal coordinate
system. When used as a subscript of a quantity,
the subscript shall mean that component of the
quantity along that axis.

These letters refer to a particular coordinate
system when used as a subscript

c-case coordinate system

g-gimbal coordinate system

f-float coordinate system

w-wheel coordinate system

gi-inner gimbal coordinate system.

Unit vector along the x,y, and z axis respectively.

Angular momentum

iv
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Force
The angle between the gimbal and case.
The angle between the float and gimbal.

Three by three transformation matrix relating two
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Angular velocity.
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Feedback transfer function.
Tensor of inertia.

Angular velocity of the wheel with respect to the
float.

Torsional stiffness constant.
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SUMMARY

The principies of operation of the gyroscope and the ideal Single
Axis Platform (SAP) are reviewed in Chapter I. 1In Chapter II the
equations of motion of an ideal SAP are derived and a signal flow
graph and a block diagram are constructed from the equations of motion.
The equations of motion of an ideal SAP, when the torsional stiffness
of the gas bearing between the float and gimbal is considered,
are presented in Chapter III, and a signal flow graph and a block
diagram are constructed from these equations of motion. A discussion
of the stability of the ideal SAP with finite and infinite torsional
stiffness of the gas bearing is presented in Chaﬁter IV. The
analysis of an ideal SAP for various inputs are presented in Chapter V.

Chapter VI is the conclusion of this study.

viii



PERSONNEL

The following staff members of Auburn University have actively

contributed in this study.

J. L. Lowry

S. N. James

C. L. Connor

D. W. Kelly

T. L. Richards

-Professor of Electrical Engineering
Project Leader-October 19, 1965 to Present.

~-Assistant Professor of Electrical Engineering
1/3 time-September 1, 1966 to Present.

-Graduate Assistant in Electrical Engineering
2/3 time-September 1, 1965 to September 1, 1966.

-Graduate Assistant in Electrical Engineering
Full Time-January 19, 1965 to Present.

-Graduate Assistant in Electrical Engineering
2/3 time-June 1, 1966 to Present.

ix



I. INTRODUCTION[1,2,3]

A, Definition and Behavior of a Gyroscope

A gyroscope may be broadly defined as a body rotating at a high
angular velocity about an axis which 1s called its spin axis. The
usual form of a gyroscope is a mechanical device of which the essential
part is a heavy flywheel mounted such that, while spinning at high
speed, its axis of rotation can turn in any direction about a fixed
point on the axis of rotation. The flywheel, mounted so as to turn
about its center of gravity by means of double gimbals, is shown in
Figure 1. This arrangement is called a Cardan suspension.

For the sake of explanation, the spinning flywheel may be repre-
sented as shown in Figure 2. This spinning flywheel has the property
of resisting any effort to change the direction of its spin axis. For
example, if the spin axis is along the X-axis as shown and a steady
force-couple or torque is applied about the Y-axis, perpendicular to
the spin axis, the spinning flywheel will not rotate around the Y-axis
as would be expected, but will rotate around the Z-axis. This rotation
of the spin axis about the Z~axis is called ''precession,'" and is a

consequence of the fundamental relation

d—H = z . (I-l)
dt

* " 1" : :

Where a bar "-" indicates a vector.

1
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Fig. 2--Precession of a spinning flywheel.



Equation (I-1) shows that the applied torque L is equal to the rate of
change in angular momentum H of the spinning flywheel.

To illustrate precession assume that a constant torque is applied
to the spinning flywheel shown in Figure 2 for an incremental time

interval At. According to Equation (I-1), the incremental change in ﬁ,

Aﬁ, will be
M =124 (1I-2)

where the direction of MH is along the torque vector L. 1If the torque
vector L is perpendicular to the spin axis of the body, the H vector
will add with AH as shown in Figure 3 to give the resulting angular

momentum of the flywheel.

C.
”
[l

Fig. 3--Vector illustration of precession.

Therefore, in effect, the H vector has rotated about an axis perpendicular
to both the torque vector and the spin axis an amount A¢. If H is large
with respect to AH, the incremental angle /¢ is given by HA¢ = AH. Since

M =1 A, o= M/ ~ L/H, where w is the magnitude of the precession



rate vector. The precession rate vector is directed perpendicular to
the plane containing L and E, and in the direction that a right handed
screw would move if rotated from H to L. The spin axis (H vector) will

always tend to align itself with the applied torque (i vector).

B. Definition and Operation of an Ideal
Single Axis Platform

The Single Axis Platform (SAP) is a device that measures angular
rotation of its outer case about a single reference axis through
the center of the device. The SAP is sometimes called a Single Axis
Reference (SAR), a name more descriptive of its actual performance.
The SAP maintains its reference axis along one of the axes of its case
by using a floated gimballed gyroscope in conjunction with a closed-
loop feedback control system. The reference axis of the SAP will
rotate with the case for all angular rate vector components perpendic=-
ular to the reference axis. The angular displacement of the case
about the reference axis is the integral of the rate wvector component
along the reference axis. The output of the SAP is obtained from an
encoder that measures the angular rotation of the case about the
reference axis, and consists of an electrical pulse every time the
angle changes by & arc seconds. These output pulses may be summed,
with the correct sign, and multiplied by % to give the total angular
rotation, or they may be summed over a time interval At and this sum

used to calculate the angular rate of the case about its reference




axis. This angular rate is the magnitude of the component along the
reference axis of the total angular rate vector of the case of the
SAP. If three SAP's are mounted on a vehicle so that their reference
axes are non-planar, the three components of the angular rate vector
along the three reference axes of the SAP's can be used to calculate
the angular rate vector of the vehicle.

The SAP's construction is shown in Figure 4, and is centered
around the gyro wheel, or rotor. The gyro wheel, due to its
almost constant, high angular momentum, establishes the gyroscopic
effect. The gyro wheel is bearing mounted to, and is sealed inside
of, the inner cylinder of the SAP. The inner cylinder of the SAP
is suspended in an almost frictionless gas bearing inside the
outer cylinder® of the SAP. The outer cylinder is mounted by trun-
nion bearings to the case, and is free to turn about the input refer-
ence axis TA (see Figure 4 ). A null position pickoff device is mounted
to the outer cylinder and is positioned so that it is sensitive to
angular displacements of the inner cylinder with respect to a predeter~
mined null position between the inner and outer cylinders. A torque
motor (torquer) is mounted in the case and can torque the outer
cylinder about TA, producing a torque vector along IA. Also mounted
along IA is an encoder, a device that measures the relative angular
displacement between the case and the outer cylinder.

To understand the operation of an ideal SAP, consider its reaction

to angular motion of the housing about the three axes, IA, OA, and

*The inner cylinder and outer cylinder are referred to as the float
and gimbal respectively.
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SA, 1In this discussion it is assumed that the case of the SAP is
mounted to a heavier body whose motion will not be affected by the
output of the torque motor of the SAP.

If there is an angular motion of the case about IA, the outer
cylinder will remain fixed with respect to the spin axis and the case will
move freely about the outer cylinder, If, due to friction or drag
the outer cylinder is torqued by the movement of the case, then the
gyro wheel and the inner cylinder will precess about OA. This pre-
cession will be sensed by the null position pickoff mounted at the
end of the inner cylinder. The pickoff produces an electrical signal
proportional to the angle sensed. This signal is fed to a servosystem
whose output unit is the torquer mounted between the case and the
cylinder. The torquer produces a torque on the outer cylinder about
IA which will exactly oppose the original torque resulting from fric-
tion, thus compensating for friction. The movement of the case with
respect to the outer cylinder will be sensed by the encoder, and the
encoder will give an output signal.

If there is an angular motion of the case about OA, the outer
cylinder will move with the case, while the inner cylinder will remain
fixed. The angular displacement of the outer cylinder will be sensed
by the null position pickoff, and an electrical signal will be generated.
This signal is amplified and fed to the torquer which produces a torque
on the outer cylinder about IA. This torque causes the gyro wheel and
the inner cylinder to precess about OA, following the angular motion
of the case. The alignment of the inner and outer cylinders with respect
to the case will remain the same, and the encoder will not give an out=-

put.



If there is an angular motion of the case about SA, both the
outer cylinder and the inner cylinder will move with the case. The
alignments of the inner cylinder, the outer cylinder, and the case
with respect to each other will remain the same, and the encodexr will
not give an output.

Translational motion or acceleration will not affect the output
of the SAP, since it is designed with the center of mass of the gyro
wheel, and the center of mass of the inner and outer cylinders, located
at the intersection of IA, OA, and SA. The forces acting on the gyro
wheel and outer cylinder due to translational acceleration will always
produce zero torque, and therefore will not cause an angular motion
of any part of the SAP.

The only motion of the SAP that will produce an output from the
encoder is angular motion about IA. Thus the output of the SAP can
be used to calculate the angular rate of the vehicle about the reference
axis IA of the SAP. Three SAP's mounted with their reference axes
aligned with the respective three axes of the vehicle's rectangular
coordinate system would give the three components of the angular rate

vector of the vehicle in the vehicle coordinate system.



II. DERIVATION OF THE EQUATIONS OF MOTION
OF AN IDEAL SAP[1,2,4,5]

A. Introduction

A mathematical model of the ideal SAP will be developed in this
chapter. The input to this mathematical model will be the angular
velocity of the case of the SAP, and the output will be an angle
that is the integral of the input angular velocity component along the
reference axis of the SAP. A functional sketch of an ideal SAP is
shown in Fig. 5, where the output angle has been designated as ©;.

The angle 62 in Fig. 5 is the angle between the spin axis of the gyro
wheel and a line perpendicular to the plane of the gimbal. Also
shown in this sketch are three sets of rectangular coordinate axes
fixed in the bodies of the float, gimbal, and case of the SAP. ’These
three coordinate systems are randomly placed on the three bodies for
ease of figure congestion, but actually they should be considered as
(and will be used as) three coordinate systems with a common origin
located at the intersection of the reference axis, the spin axis, and
the axis of rotation of the float with respect to the gimbal. These
coordinate systems will be designated by the subscripts £, g, and ¢
for the float, gimbal, and case coordinate systems respectively; i.e.,
a vector F written in the float coordinate system will be Ff’ but

in the gimbal coordinate system the vector will be Fg' Note that the

three coordinate systems will align with one another when &7 = 62 = 0.

10
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Fig. § ~~Functional sketch of an ideal SAP.
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A vector written in the float coordinate system can be transformed

to the gimbal coordinate system by Fg =C Ff, where

gf
cos® -sinP 0
C £ = sindy cosO5 0 . (11-1)
& 0 0 1

Note that when 62= O,Cgf

means that the gimbal and float coordinate systems are aligned.

is the identity matrix and Fg = Ff, which

A vector written in the case coordinate system can be transformed to

the gimbal coordinate system bylfg = Cchc’ where
cose1 0 -sine1
c_. = 0 1 0 . (11-2)

g¢ sin@l 0 cosel

The equations governing the operation of an ideal SAP fall into
two distinct classes: (1) The equations of motion of the floated
gimballed gyroscope, and (2) the equations of the feedback loop,
which include the compensation network, the amplifier, and the torquer.
The latter division, showing the necessary inputs and outputs of the
two sections, is shown in Fig. 6, where Ec is the angular rate
vector of the case of the SAP. The output of the torquer is a torque,
Lyg’ that is applied to the gimbal of the SAP, and hence a vector along
the reference axis of the SAP. This torque vector is always aligned
with the y-axis of the gimbal; hence, the notation Lyg'
The equations of the floated gimballed gyroscope must be obtained

so that they will yield the angles 67 and 92 for the inputs Ec and Lyg’

The equations of the feedback loop must be obtained so that they will
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yield the torque Lyg for an input angle 92. The equations of the
feedback loop are assumed to be linear, thus permitting the relation
between Lyg(S) and 62(8) to be written as a transfer function. This

transfer function was obtained from the Marshall Space Flight Center,

Huntsville, Alabama, and is written

1 (S) (5+100+3200) (S+100- 200) (S+50)
e = K H(S) = K,

62(8) (5+1) (5+6000) (S+1500+3j1000) (S+1500- 1000)

b

(II-3)

where K2 is the feedback gain. Since this function is the transfer
function of the feedback loop, it is called (in keeping with standard

notation) K2H(S).

The law of rotational motion, upon which the equations of this

section are based, is

T o== , (I1-4)

where T is the externally applied torque to the rigid body, and dH/at
is the time rate of change of the angular momentum vector H of the
body. The angular momentum vector of a rigid body can be written in

terms of the tensor of inertia:

- T
Ixx IXY Txe @x

H=1Io =| 1 T I ® II-5

H = 1o s Yy Ly y , ( )
L_IZX IZY Izz wz
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where the I's represent the moments and products of inertia, and o

is the angular velocity of the body. 1If the coordinate axes are
chosen fixed in the body so that they coincide with the principal axes
of the body, the products of inertia are zero and the moments of
inertia are constants. Under these conditions, which will hold for
the set of coordinate axes used in deriving the equations of motion

of the gimballed floated gyroscope, (II-5) can be written

— — -
Hx Ixx:wx
H = Hy = Iyy wy , (II-6)

H I W

LZ— LZZZ—

or

i Ixx Wy, + ] Iyy Wy +k Izz w, (1II-7)

|
i

where T, j and k are unit vectors along the x, y, and z body fixed

axes, respectively. The time derivative of the vector H is

L T E T di
de 1 Tk ©x Iyy Oy + k I 0 + Iygx ¥x dc
+1 o 4o+ o & (II-8)
yy Y a4t Z at

where the dot denotes time derivative. It can be shown that (II-8)

is equal to
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— . 1
I w
& Xx X + W00, (Iz - Iyy)
dt ¥y Ty Bz (IXX - 1,,) , (11-9)
I,z @, + gy (Iyy - Iy)
or
dH - x _ _
— =L=H+wxH, (T1-10)
dt
X - - - - =
where H = 1 Hx + j Hy + k Hz and @ x H is the cross product.

Equation (II-9) can be written as the following three separate

scalar equations:

I oy + - =

- WOy wywz (Izz Iyy) Lx

I o +ow (I -I )=L (1I-11)
yy y X 2 XX A4 y

I, © +oo (Iyy - Ixy) = L >

where Lx’ Ly and Lz are the components of the externally applied
torque along the x, y, and z axes of the body fixed coordinate
system, respectively. The three scalar equations in (II-11) are

Euler's equations referred to the principal axes of the body.
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B, Derivation of the Float Torque Equation

The angular momentum vector of the gyro wheel, written in the

float coordinate system, is

I ( + w.)
- XXW Y xf S
yyw V£
Izzw Gsz)
where I s I and I are the moments of inertia of the gyro
xxw~  YyW zzw

wheel about the float coordinate axis, Wy is the assumed constant
angular velocity of the wheel measured with respect to the float, and
Wy £ wyf and w,¢ are the components of the angular velocity of the
float written in the float coordinate system.

The angular momentum vector of the float, not including the

gyro wheel, written in the float coordinate system is

Ixxfa&f
H__ = , I1-13
Hee Lg%yt (11-13)
Lz £®zf
where 1 s I and I are the moments of inertia of the float
xxf’ Tyyt zzf
about the float coordinate axes, and w _, ® _ and o _ are the components
xf~ yf zf

of the angular velocity of the float written in the float coordinate
system.
The angular momentum vector of the float~-wheel combination,

written in the float coordinate system, is
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Tigogs + H
= H -} H = [
H(fw)f ce wa nya)yf , (II-14)
T e®,¢

where
Ixf = Ixxw + Ixxf s
I =1 + I
yE  Tyyw yyf °

and H is the magnitude of the component of the angular momentum of

the gyro wheel resulting from the angular velocity wg, i.e., H, = Ixxwws'

The float torque equations can be obtained from (II-14) by

performing the operations indicated in (II-9) or (II-10). The resulting

equation is

. ]

w

_ Jxf Ixf wyf Lzt (I - ny)

Le = o 1 +o w -
£ yEf yf xf zf Ty Lg) +o,p Hy . (II-15)

®, ¢ Tzg T Opp Opg (Qyg = Tpp) - Oy HW_J

Equation (II-15) represents Euler's equations modified to include
the momentum of the gyro wheel rotating at an assumed constant velocity

D .
S
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C. Derivation of the Gimbal Torque Equation

The gimbal torque equation can be developed by means of a similar
procedure to that used to develop the float torque equation.
The angular momentum vector of the gimbal (not including the

float-wheel combination), written in the gimbal coordinate system is

_ Lexg
Hgg = ;ygwyg s (11-16)
IZngg
where ng, Iyg and Izg are the moments of inertia of the gimbal
about the gimbal coordinate axes, and wxg’ w g and w are the

components of the angular velocity of the gimbal written in the gimbal

coordinate system.

The angular momentum vector of the float-wheel combination written
in the gimbal coordinate system can be obtained from the ﬁ(f Y in
W

(1I-14) by using the transformation in (II-1); i.e. H =c _H or

> (Bnyg gf (fw)f

-sin ©
_ cos 6,y 2 0 Tee xe T By
= 1 o R -

H(fw)g sin 92 cos O, 0 ny wyf (11-17)

0 0 ! Log ot

The angular momentum vector of the gimbal-float-wheel combination,

written in the gimbal coordinate system, is
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I w cos ©
Xg Xg

=]
i

I o + in ©
ve Pyg sin
I w 0
z
L z8 g__l’ L

(gfw)g

or

—

Xg
-ny wyf sin 69

q = I w._ +H sin®
(gfw)g yg Y& W z

+ny Wyf cos 62

I w + I -w
zg 28 zf Tzf

]

I w 4+ H cos® +1
w 2

+ I
X

-sin 62 0 IXf wxf + HW
0
cos 62 ny wyf
0 L L
(II-18)
® cos ©
xf
£ @O ¢ sin 0 . (II-19)
—

The gimbal torque equation can be obtained from (II-19) by performing

the operations indicated in (II-9) or (II-10).

is

The resulting equation
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o o (I -
yg Vzg (Tpg = Ty Ty 0 T
_Hw sin 62 (wzg + 62) - wzg @ ¢ I ¢ sin 92

- ) @ : o
wzg cnyf ny cos Y, + Xngg + w IXf cos )

xf

"k e2 I s sin 92 - a)yf ny sin 92

0
wyf 2 ny cos 82

(ng wxg (ng - Izg) + wzg H, cos 62

0o I cos 6 -uw

zg Cxf xf zg ('ny ny

- fs) e
Wy O, ¢ sz + wyg Iyg + 9 (HW cos 5
»:-(L)xf IXf cos 92 - w}’f ny sin 92)

O £ Ixf sin 82 + onf ny cos 92

- in ©
(ng Dy o (Iyg ng) + Wyo H, sin 2

— o
<8 wxf IXf sin ©, + (ng (l)yf ny cos
- - 0
wyg HW cos 62 ve d)xf Ixf cos ©,
in©, +o_ I
-iwyg a)yf ny sin ) U‘)zg zg
+ (sz sz

-

sin ©

2

2

(I1-20)
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D. Derivation of the Block Diagram
of an Ideal SAP

The float of an ideal SAP is mounted to the gimbal so that the
torque transferred from the gimbal to the float through the mount
cannot have a component along the z-axis of the float. Therefore,

in an ideal SAP Léf is zero. L _ will not be set equal to zero in

zf
the following work, because its inclusion in the equations to be

developed will permit them to be used to represent the equations

of motion of a Pendulous Integrating Gyro Aecelerometer (PIGA). L

zf
can also be considered as a possible error torque. From (II-15),
sz =w,¢ sz + Wyf myf (ny - I.8) -wyf Hw . (I1-21)

The gimbal of an ideal SAP is mounted to the case so that the
torque transferred through the mount is zero along the y-axis of the
gimbal. The output of the torque motor that is mounted between the
gimbal and the case is a torque on the gimbal that is always along
the y-axis of the gimbal. Therefore, the component of the external
torque applied to the gimbal-float-wheel combination of an ideal SAP
along the y-axis of the gimbal is the output of the torque motor.

In the following work it will be assumed that L__ can contain a compo-

y8

nent of error torque, L resulting from friction or drag.

yge’
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From (II-20),

= - 5]
Lyg (ng coxg (ng Izg) + wzg H, cos 9

Ixf cos 62 -

'w)zg wxf I _ sin 62

zg wyf vE

I + 62 (Hw cos ©

- I +
P2f e T Yyg vg

xg (I1-22)

2
-I-u)xf IXf cos 6, - Wy ny sin 92)
o ¢ Ixf sin 92 +a)yf ny cos 62 .
It can be seen from the functional sketch of Fig. 5, under the

condition 62 = 0, that

W LW , (II-23)

and

o z(l) .
yf yg

Using the relations in (II-23), together with cos ®, ~ 1 and sin 62 = 0,

in (II-21) and (II-22), gives
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L = T _+ - - )
2f | Czg o zE | Uxf Cyf <ny L) e H (I1-24)
and
L =0 o (I_+I_-1I -
vg zg Xg ¢ Xg xf zg sz)
+H + © ) -
e (11-25)

tw (I +1

yg y8 yg) -

Since the angular momentum of the gyro wheel is large (w large),
s

lo (@ +1T .- T,5-1,0|<<H, ,

g (e = Tl <<H, ,

(11-26)

and

o
Xg

- < .

(I¢ sz)l <<H

Using (II-26) in (II-24) and (II-25), and rearranging terms, gives
w = — (L + w H)

I¢ zf  yg w (11-27)

and
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w = — (L - H) . -
Ve B (yg ¢ w) (11-28)

Inspection of Fig. 5 yields the following equations:

8 =w - W II-29
1 ve = e ( )

and
wzg = w,. sin 61 + w,, cos 81, . (11-30)

A signal flow graph of the floated gimballed gyroscope can be constructed

from (I1-27), (II-28), (II-29) and (II-30), and is shown in Fig. 7.
The addition of the feedback loop to the signal flow graph of Fig. 7

gives the signal flow graph of an ideal SAP in Fig 8. A block diagram

of an ideal SAP is shown in Fig. 9.
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ITI. DERIVATION OF THE EQUATIONS OF MOTION OF
AN IDEAL SAP WHEN THE TORSIONAL STIFFNESS
OF THE GAS BEARING BETWEEN THE GIMBAL
AND FLOAT IS CONSIDERED [1,6,7]

The gas suspension bearing between the gimbal and float of an
ideal SAP was considered in Chapter II as a perfect frictionless
bearing with perfect coupling between the gimbal and the float.

A better representation of the gas bearing is obtained by

assuming that the motion of the gimbal about its y-axis is coupled to
the float through a shaft with‘finite torsional stiffness, instead
of through a rigid shaft. Fig. 10 is a functional sketch of the SAP,
where the finite torsional stiffness of the gas bearing has been
incorporated by separéting the gimbal into two gimbals coupled together
by a shaft having a torsional stiffness ccmstant, Kiy. The inner .
gimbal has been added for mathematical convenience, and it will be
considered massless since it does not exist in the physical SAP.

The torsional stiffness constant, Kb’ will be a function of the gas
pressure; hence, as the gas pressure decreases, Kj decreases.

The equations of motion of an ideal SAP, when the torsiomal
stiffness of the gas bearing is considered finite, can be derived
in a mammer similar to that used in Chapter II.

The addition of finite torsional stiffness does not change the

derivation of the float torque equation except that Oy = Wygi

instead of(byf N Wy Therefore, the float torque equation is the
same as (II-27) except that Wy is replaced by Wyoqt

29
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10~-Functional sketch of an ideal SAP with a finite torsional
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®w .= — (L _+4+wn , H). (I1I-1

zf sz zf vl Hw )
The gimbal torque equation for infinite torsional stiffness,

(II-28), can be modified to give the inner gimbal torque equation

for the SAP when finite torsional stiffness is considered. This

modification can be accomplished by realizing that the torque transmitted

through the torsional shaft to the inner gimbal is Kb(e1 - 63), and that

the mass of the inner gimbal is zero. Incorporating these two facts

into (II-28) gives the immer gimbal torque equation,

1
@oos = — [O1-83) Ky -  HT . (I11-2)
vE
The outer gimbal torque equation can be derived by performing
the operations in (II-9) or (II-10) on the ﬁg given in (II-16); i.e.,
_  digg
L = — >
&  at
where ig is the externally applied torque to the outer gimbal, and H
is the angular momentum vector of the gimbal. The externally applied
torque along the y-axis of the gimbal is the output torque of the motor,
plus the error torque L&ge’ minus the torque K$(91 - 93). The outer

gimbal torque equation is

1
= -5, - - - -
ot [y - e o oy (g - Tl (I1-)
yg



32

where Lyg is the sum of the output torque of the torquer and the error
torque, and I . is the sum of the moments of inertia of the gimbal,

y
the torquer rotor, and the shaft about the y-axis of the gimbal. Since
lwxg (ng - Izg)l< <[HWL (III-3) can be written

1
@y = E;; [Lyg - (61 - 63) Kl . (III-4)

It can be seen from the functional sketch of Fig. 10 (under the

conditions that 92 ~ 0, and that 61 - 645 is small), that

1 Vg ye

2 zf zgi

e -6, = w -,
1 3 Tyg oyl ’ (III-5)

w =W ,
zgi zg

w = W
yei yE

and

w =W

ygi yE

A signal flow graph of an ideal floated gimballed gyroscope with
finite torsional stiffness of the gas bearing can be constructed from
(I1I-1), (III-2), (III-4), and (III-5), and is shown in Fig. 11. The

incorporation of the feedback loop in the signal flow graph of Fig. 11
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yields the signal flow graph of the ideal SAP with finite torsional
stiffness of the gas bearing shown in Fig. 12. A block diagram
of an ideal SAP with finite torsional stiffness of the gas bearing

is shown in Fig. 13.
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IV. STABILITY ANALYSIS[8,9]

A. Introduction

The stability of the floated gimballed gyroscope working in
conjunction with the feedback loop is of prime importance in the
operation of ideal SAP. This stability can be studied byvassuming
that thé input angular velocity of the case is zero and treating
the floated gimballed gyroscope énd the feedback loop as a
conventional feedback system. Under the condition of zero angular
velocity of the case, the block diagram of the SAP in Fig. 9
can be simplified to give the block diagram in Fig. 1l4. 1In Fig. 14
the error torque about the Y- axis of the gimbal, Lyge’ is considered

as the input, and the error angle, 6,, is considered as the output.

2
Even though the value of ez(t) for a given input error torque Lyge(t)
is not the desired output-input relation for the operation of an

ideal SAP, its investigation will give very useful information about

the stability of the SAP. The transfer function of Fig. 14. is

9,(s) K1G(S) (V-1
—— = s V-
Lyge ©) 1 + K K B(S)G(S)

where KG(s) is the transfer function of the floated gimballed
gyroscope, and KZHGS) is the transfer function of the feedback path.

KoHE ) is given in (II-3) and is repeated here for convenience;

37



38

A

‘sTsATeue £3T11qEIS 107 gys @y3 jo weadep }oo1q paryridwig--41 ‘814

Ianbxog

I3 T TTduwy

dJIomyau
uoTyesuaduwo)

4
adoosoux43d \\u +
paTTequUTd c— K¢

pajeoTd 9341




39

K2(S + 100 + j200)(S + 100 - j200) (S + 50)

K H(S) = (S + 1)(s + 6000)(S + 1500 + 31200) (S + 1500 -~ j1000)

(Iv-2)

B. Stabilityof an Ideal SAP »
With Infinite Torsional Stiffness of the Gas Bearing

Analysis of the signal flow graph of the floated gimballed
gyroscope in Fig. 7 yields the following transfer function, relating
the Laplace Transform of the error angle 92 to the Laplace Transform

of the applied torque L_ :

Vg
H
W
6 ,(S) I (I +1I)
- 2 - zf " yg vi
K.G(8) = = ) -
1 (s) ) - 3 (Iv-3)
S(s” + - )

zf(Iyg * ny)

Equation (IV-~3) is restricted in its use, since in the derivation
of the signal flow graph in Fig. 7, 92(t) was assumed to be very

small so that cos 62 =~ 1 and sin 92 ~ 0. An analysis of (IV-3)

indicates that the operation of the floated gimballed gyroscope

under the limitations of very small 6_ is oscillatory with poles

2
on the imaginary axis at S =0, + j HW/ \/izf (Iyg + ny).

In order to comprehend more fully the requirements for stability

of an ideal SAP, a typical set of numerical values will be used.

These numerical values, which were obtained from information
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furnished by Marshall Space Flight Center in Huntsville, Alabama,

are

B, = 2.51 x 10° gn en®/sec ,

(IV-4)
~ 3
Ie=2.0x10 gnoen’ ,

and

4
I _+1I 2.0 x 10 gm cm2

ve vE

Substituting the values of (IV-4) into (IV-3) gives the transfer
function of the floated gimballed gyroscope:

6.28 x 1072

K,G(S) =

1 (1Iv-5)

s(s? + (400)?)
The root locus plot of the characteristic equation of (IV-1), with
KlG(S) from (IV-5) and KoH(S) from (IV-2), for variations of the

gain K = KjKy, is shown in Fig. 15.

12
In Fig. 15 the loci cross the jw axis at + j 1355 for K = 40 x 10

Therefore, the ideal SAP is stable for all K < 40 x 1012. An operating

gain of 10.0 x 1012 will furnish good stability with the closed-loop

poles located in the S-plane at
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Pl = -66 + j43 ,
Pz = '66 - j43 E)
P3 = -813 ,
B, = -165 + j660 , (1Iv-6)
P5 = -165 - j 660 ,
Pé = -1805 ,
and
P7 = -5923 .
The transfer function of the closed loop can be written as
©,(8) 6.28 x 10_2 (S+1)(S+6000)(S+1500+j1000)(S+1500—j1000)
1 (s) i=7 ’
vee (S=P.)
i=1 *
(Iv-7)

where the P 's are given in (IV-6).
i
A Bode plot of the open-loop transfer function KG(S)H(S) for

12
K =10 x 10  is shown in Fig. 16. The relative stability of

the closed-loop SAP, as indicated by the root locus plot, is confirmed

by a gain margin of 10.0 decibels and a phase margin of 25 degrees

in Fig. 16.

C. Stabilityof an Ideal SAP with
Finite Torsional Stiffness of the Gas Bearing

Analysis of the signal flow graph of the floated gimballed

gyroscope in Fig. 11 yields the following transfer function relating
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the Laplace Transform of the error angle 62, to the Laplace

Transform of the applied torque Lyg:

62(8) "1-1‘;

~
=t
@
~
v
S
[
]

(s) I, I . I v (I +I )
Lyg S-{ vE “zf “yg Sé+ < 8 . Ls yg yf:) 5 +%}
2 g K
H™ Ky

(Iv-8)

Note that if Ky is allowed to approach infinity in (IV-8), the
transfer function becomes the transfer function for an ideal

SAP with infinite torsional §tiffness in (IV-3). An analysis of
(IV-8) indicates that the inclusion of finite torsional stiffness
has introduced another pair of conjugate imaginary poles. The
floated gimballed gyroscope with finite torsional stiffness of
the gas bearing has five poles located on the juw-axis.

In order to comprehend more fully the requirements for
stability of an ideal SAP with finite torsional stiffness of the
gas bearing, a particular set of numerical values will be used.
The numerical values, which were obtained from information furnished

by the Marshall Space Center in Huntsville, Alabama, are

Hy = 2,51 x 106 gm em?/ sec,
2

Ig= 1195 gm cm®,
2
ny = 1565 gm cm”, (1Iv-9)
I = 18380 gm cmz, .
yg

and
Ky = 7.0 x 107 dyne cm/radian.
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Substituting (IV-9) into (IV-8) gives the transfer function of the

floated gimballed gyroscope:

5.1 x 10°
K.G(S) = . (IV-10)
1 S[s% + (400)2] [s2 + (2840)%]

The root locus plot of the characteristic equation of (IV-1),
with KIG(S) from (IV-10) and K,H(S) from (IV-2), for variations
of the gain K = K;Kp, is shown in Fig. 17. A gain of 10 x 1012
will furnish good stability with the closed-loop poles located in

the S-plane at

P]. = -66 + j43 B

P, = -66 - j43 ,

P3 = -813 ,

B, = -165 + 3660 ,

(Iv-11)

Pg = -165 - j660,

P6 = ‘1805 ’

P; = -5923 ,

Pg = -120 + j2800,

and

o
)
W

-120 - j2800 .

The transfer function of the closed loop can be written as
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6,(8) 5.1x10° {(S+1)(S+6000) (S+1500+31000) (S+1500- j 1000)}
- . s
1L (s) i=9
sge (s - 2.)
i=1 1

(Iv-12)

where the P 's are given in (IV-11).
i




V. ANAIYSIS OF AN IDEAL SAP [8,9]

A. Introduction

The equations of motion of an ideal SAP contain the sine and
cosine' of the dependent variable ©7. The presence of these
trigonometric terms makes the equations of motion non-linear, if
the input contains W, 0T Wwyc. This necessitates the use of either
digital or analog simulation when the inputs wy. and W, are
present. However, other inputs to the system can be analyzed,
when w,. and w,. are zero, siﬁce the equations governing the motion
of the SAP for these inputs are linear differential equations.
Section B of this chapter will be concerned with the transfer

functions of an ideal SAP that relate the output 61 to the inputs

Wyes Lyge’ and L,¢, when wyge and w,. are zero. In section C of
this chapter, Wy o will be treated as an input and the transfer

functions relating 61 and 62 to w, o will be derived with all other

inputs being zero. Actually, o, is the sum of wy, sin ©1 and

2g
W, cos ©1, which can be assumed to be independent of 8; if the

variations in ©7 are small. Under the conditions of small variation

of 61 and all inputs zero except w the transfer functions relating

zg’
91 and 99 to wzg have physical meaning. The evaluation of 91 and

62 for a step input of wzg will provide useful information concerning
the ability of the ideal SAP to react to input angular rates of

the case that are perpendicular to the reference axis. Only the

48
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equations of an ideal SAP with infinite torsional stiffness of
the gas bearing will be considered in this chapter.
B. TIransfer Functions of an Ideal

SAP with Infinite Torsional Stiffness
of the Gas Bearing

Analysis of the signal flow graph in Fig. 8 or the block

diagram in Fig. 9 will yield the following transfer functions:

ai® - .1 , (V-1)
Uyc(S) S
6,(9) 1 D(H)
= . s (V-Z)
Loge(S) Tt Iyt T(s-p4)
and

6, -1 D (H) + KyN (H)

1(8) i _s Hy, 2 ’ (¥-3)
L, ¢(s) Te(Tye + Ie) ST (spi)d

where the pi's are the roots of 1+KG(S) H(g) = 0, and N(H) and D(H)
are the numerator and denominator polynomials of H(g), respectively.
Each transfer function was derived by assuming all inputs zero, except
the input of interest. Since the equations of motion, with wy. and
w,. zero, are linear differential equations, superposition will hold,

and (V-1), (V-2) and V-3) can be combined to give
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S S
o csy < 30 Tyg T Iyt ) Tyge(sy pmy-IRE MDD LSRN
1 5 Iz£ S TI,¢
1T (s-p;)
(V-4)

For the numerical values used in chapter IV and the H(S) in (II-3)

with K = 10 x 1012, the transfer function in (V-1), (V-2) and (V 3)
become:
NE
__1 . (Vv-5)
wye(8)

0,(8) 5x 107> (S+1) (S+6000) (S+1500+31000) (S+1500- 51000

b

L (S) 7
ee M (s-p)
. 1
i=1
(V-6)
o (s) -
1 _ -6.28 x 10° “(S+1)(S+6000) (S+1500- 11000) (S+1500+31000)
L .(S)
£ S-p.
z 511 (s-p;)
39.9 x 10° (S+50)(5+100+j200) (5+100-§200) (
= ’ V'7)
i
where
pl = -66 + j43’
P, = -66 - j43,
p3 = -813 ,
p> = -165 + 660,
pg = -165 - j660, (V-8)
Py = -1805 ,
and
P7 = -5923,
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C. Reaction of the Ideal SAP to Angular Rates
Perpendicular to the Reference Axis

The ideal SAP must be capable of reacting to inputs Wy and
w,. without appreciable change in the relative alignment of the
float, gimbal, and case, with respect to each other. The.ability
of the ideal SAP to maintain this alignment can be investigated
by treating wzg = Wy sin 81 +-wzé cos el as an input that is a
known function of time while all other inputs are held at zero.
If the variations in the angles 81 and 62 can be shown to be very

small for a step input of w,., the reference axis will move with

g

the case for inputs w c and W,., thus maintaining the desired
X

reference.

An analysis of the signal flow graph in Fig. 8 or the block

diagram in Fig. 9 will yield the following transfer functions:

61(s) 1 N(H)
! = . 2 (v-9)
wzg(s) Tt Iys 7 (5-p3)
and 2
H
w A‘l
6._(S) {Sz + T (L + To5) + D(H)
27 2t ye yfj (V-10)
(l)zg(s) TT (S'Pi)

where the pi's are the roots of the characteristic equation

1 + KG(S) H (S) = 0, and D(H) is the denominator polynomial of H(S).
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Substituting the numerical values from (Iy-4) and the H(S)

from (IV-2) with K=10 x 1012 into (V-9) and (V-10) yields

el(s) 79.8 x 108 (S+50)(S+100+j200)(S+100-j200) (
_ V-11)
(s !
©2g(S) T (s-p,)
i=1

and

3 , 5
8,(s) {sz + (400)2j‘~ {(s+1)(s+eooo)(s+1soo+j1000) (S+1500- §1000) jL )

=
U)Zg(s) (S-pi)
i=1
where the pi's are given in (V-8).
For a step input wzg = 0.1 radians per second, Gl(t) and ez(t)

will reach a steady-state value in approximately 5/66 seconds.

The steady-state values will be

D
n

1SS 16 arc seconds

and

eZSS = 2,6 arc seconds.

Therefore, the ideal SAP is capable of maintaining the desired

reference alignment to a high degree of accuracy.



VI. CONCLUSION

According to (V-1), the angle between the case and the gimbal
of an ideal SAP, 61, for an input angular velocity of the case

about the reference axis of the SAP,wyc, is

op = - [y at | (v1-1)

where the reference direction for 91 is shown in Fig 5. Since the
angle 91 is the output of an i&eal SAP, an ideal SAP measures the
integral of the angular velocity of its case about its reference
axis. The actual value of 6 may differ from the integral of
Wye due to input angular velocities perpendicular to the reference
axis of the SAP or due to error torques developed insdide the SAP.
An indication as to the amount that 61 may vary from the integral
of wyc can be obtained by assuming step disturbances for the inputs
Wye s Lyge’ W, g and L,¢ shown in Fig. 9. The solutions to (V-5),
(V-6), (V-9) and (V-11) with step inputs of woo = Voo u(t),

= Ly u(t), Ly¢ = Lz u(t), and Wy = Wzg u(t) respectively,

L
yge

will combine to give

©,(t) = -W ¢+ 38.3x 10711, - 40.2 x 1078¢L, - 49.4 x 107121
yc

7
+80.4 x 10°°W +Z K.ePit |
zg i
i=1
(VI-2)
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where the p;'s are given in (V-8)., The first term in (VI-2) is
the desired output and the remaining terms are error terms. After

k
5/66 seconds the.z: Kiepit terms are approximately zero. The

i=1
second, forth, and fifth terms are due to . _, L g and wgc
, yge 2
respecfively and are small. The third term in (VI-2) could be
appreciable unless the magnitude of the step error torque is
very small, thus making it necessary to design the floated gimballed
gyroscope such that Lb is small.

Evaluation of (V-5) and (V-7) shows that the output Gl(t) for

inputs Wy and L, can be written as

B1(t) = - [myc dt - 40.2 x 10'8 [Lz dt + E(t) (VI-3)

If the center of mass of the wheel of the floated gimballed gyroscope
is shifted a small amount along its spin axis, a torque Lz will
be introduced about the z-axis of the float proportional to any

acceleration of the case along the reference axis. Equation

(VI-3) would then become

0,(t) = - fcnyc dt - kf';éc dt + E(t), (VI-4)

where X, is the acceleration of the case along the reference axis

c
of the SAP and k is a constant. If E(t) is small compared to the
other terms in (VI-4), the output is the negative of the sum of

a term proportional to the integral of the acceleration of the
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case along its reference axis and the integral of wyc' Operating
under these conditions the floated gimballed gyroscope and
feedback loop is a Pendulous Integrating Gyro Acceleromater (PIGA).
The consideration of finite torsional stiffness of the gas
bearing, instead of infinite torsional stiffness, introduces two
more coﬁplex poles in all of the transfer functions in Chapter
V as well as changing the numerator of each. An analysis of
Figs. 12 or 13 would readily yield these transfer function for
the ideal SAP when finite torsion stiffness of the gas bearing is
considered.
The block diagram in Fig. 9 and 13 for the ideal SAP with finite
and infinite torsional stiffness of the gas bearing, respectively,
can be used to simulate on either digital or analog equipment

the actual motion of the ideal SAP.



REFERENCES

William V. Houston, Principles of Mathematical Physics, McGraw-
Hill Book Company, New York, 1948.

Richard Kolk, Modern Flight Dynamics, Prentice-Hall, Inc.,
Englewood, New Jersey, 1960.

James L. Lowry, An Introduction to Analytic Platforms for
Inertial Guidance, Technical Report, Contract NAS8-20004,
Auburn University, Auburn, Alabama, April 1966.

Herbert Goldstein, Classical Mechanics, Addison-Wesley Publishing
Company, Inc., Reading, Massachusetts, 1959.

George B. Doane III, A Capsule Summary of Rigid Body Dynamics
Applicable to Gyro Investigation, R-ASTR-G-WP-39-64.

George B. Doane III, The Effect of Gas Supply Pressure on_the
Gyro/Accelerometer Servosystem Dynamics, R-ASTR-G-WP-5-65.

George B. Doane I1I, Further Considerations on the Dynamic

Effects of Finite Torsional Stiffness in Gyroscopic Instruments,
R~ASTR-G-WP-18-65.

Charles H. Wilts, Principles of Feedback Control, Addison-
Wesley Publishing Company, Inc., Reading, Massachusetts, 1960.

John J. D'Azzp and Constantine H. Houpis, Feedback Control
System Analysis and Synthesis, McGraw-Hill Book Company,
New York, 1966.

56



